2,180 research outputs found

    Equivalent of a Thouless energy in lattice QCD Dirac spectra

    Get PDF
    Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SUc(2)SU_c(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.Comment: LATTICE99 (theor. devel.), 3 pages, 4 figure

    On quantum equivalence of dual sigma models: SL(3)SL(3) examples

    Full text link
    The equivalence of several SL(3)SL(3) sigma models and their special Abelian duals is investigated in the two loop order of perturbation theory. The investigation is based on extracting and comparing various β\beta functions of the original and dual models. The role of the discrete global symmetries is emphasized.Comment: Plain TEX, 24 page

    Perturbative Quantum (In)equivalence of Dual σ\sigma Models in 22 dimensions

    Get PDF
    Various examples of target space duality transformations are investigated up to two loop order in perturbation theory. Our results show that when using the tree level (`naive') transformation rules the dual theories are in general {\it inequivalent} at two loops to the original ones, (both for the Abelian and the non Abelian duality).Comment: 11 pages, Latex, uses espcrc2.st

    Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms

    Full text link
    We present a circuit QED experiment in which a separate transmission line is used to address a quasi-lumped element superconducting microwave resonator which is in turn coupled to an Al/AlOx_{x}/Al Cooper-pair box (CPB) charge qubit. In our measurements we find a strong correlation between the measured lifetime of the CPB and the coupling between the qubit and the transmission line. By monitoring perturbations of the resonator's 5.44 GHz resonant frequency, we have measured the spectrum, lifetime (T1T_{1}), Rabi, and Ramsey oscillations of the CPB at the charge degeneracy point while the CPB was detuned by up to 2.5 GHz . We find a maximum lifetime of the CPB was T1=200 μT_{1} = 200\ \mus for f=4f = 4 to 4.5 GHz. Our measured T1T_{1}'s are consistent with loss due to coupling to the transmission line, spurious microwave circuit resonances, and a background decay rate on the order of 5×1035\times 10^{3} s1^{-1} of unknown origin, implying that the loss tangent in the AlOx_{x} junction barrier must be less than about 4×1084\times 10^{-8} at 4.5 GHz, about 4 orders of magnitude less than reported in larger area Al/AlOx_{x}/Al tunnel junctions

    Modeling the functional genomics of autism using human neurons.

    Get PDF
    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD

    Simple algebras of Weyl type

    Full text link
    Over a field FF of any characteristic, for a commutative associative algebra AA with an identity element and for the polynomial algebra F[D]F[D] of a commutative derivation subalgebra DD of AA, the associative and the Lie algebras of Weyl type on the same vector space A[D]=AF[D]A[D]=A\otimes F[D] are defined. It is proved that A[D]A[D], as a Lie algebra (modular its center) or as an associative algebra, is simple if and only if AA is DD-simple and A[D]A[D] acts faithfully on AA. Thus a lot of simple algebras are obtained.Comment: 9 pages, Late

    The QCD sign problem and dynamical simulations of random matrices

    Full text link
    At nonzero quark chemical potential dynamical lattice simulations of QCD are hindered by the sign problem caused by the complex fermion determinant. The severity of the sign problem can be assessed by the average phase of the fermion determinant. In an earlier paper we derived a formula for the microscopic limit of the average phase for general topology using chiral random matrix theory. In the current paper we present an alternative derivation of the same quantity, leading to a simpler expression which is also calculable for finite-sized matrices, away from the microscopic limit. We explicitly prove the equivalence of the old and new results in the microscopic limit. The results for finite-sized matrices illustrate the convergence towards the microscopic limit. We compare the analytical results with dynamical random matrix simulations, where various reweighting methods are used to circumvent the sign problem. We discuss the pros and cons of these reweighting methods.Comment: 34 pages, 3 figures, references added, as published in JHE

    The role of the North Atlantic Oscillation in controlling U.K. butterfly population size and phenology

    Get PDF
    Copyright @ 2012 The Authors. This article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.1. The North Atlantic Oscillation (NAO) exerts considerable control on U.K. weather. This study investigates the impact of the NAO on butterfly abundance and phenology using 34 years of data from the U.K. Butterfly Monitoring Scheme (UKBMS). 2. The study uses a multi-species indicator to show that the NAO does not affect overall U.K. butterfly population size. However, the abundance of bivoltine butterfly species, which have longer flight seasons, were found to be more likely to respond positively to the NAO compared with univoltine species, which show little or a negative response. 3. A positive winter NAO index is associated with warmer weather and earlier flight dates for Anthocharis cardamines (Lepidoptera: Pieridae), Melanargia galathea (Lepidoptera: Nymphalidae), Aphantopus hyperantus (Lepidoptera: Nymphalidae), Pyronia tithonus (Lepidoptera: Nymphalidae), Lasiommata megera (Lepidoptera: Nymphalidae) and Polyommatus icarus (Lepidoptera: Lycaenidae). In bivoltine species, the NAO affects the phenology of the first generation, the timing of which indirectly controls the timing of the second generation. 4. The NAO influences the timing of U.K. butterfly flight seasons more strongly than it influences population size.This study was supported by a multi-agency consortium led by the U.K. Department for Environment, Food and Rural Affairs (Defra), including the Countryside Council for Wales, the Joint Nature Conservation Committee, the Forestry Commission, Natural England, the Natural Environment Research Council, the Northern Ireland Environment Agency and Scottish Natural Heritage. This article is made available through the Brunel Open Access Publishing Fund

    The aa-theorem and the Asymptotics of 4D Quantum Field Theory

    Full text link
    We study the possible IR and UV asymptotics of 4D Lorentz invariant unitary quantum field theory. Our main tool is a generalization of the Komargodski-Schwimmer proof for the aa-theorem. We use this to rule out a large class of renormalization group flows that do not asymptote to conformal field theories in the UV and IR. We show that if the IR (UV) asymptotics is described by perturbation theory, all beta functions must vanish faster than (1/lnμ)1/2(1/|\ln\mu|)^{1/2} as μ0\mu \to 0 (μ\mu \to \infty). This implies that the only possible asymptotics within perturbation theory is conformal field theory. In particular, it rules out perturbative theories with scale but not conformal invariance, which are equivalent to theories with renormalization group pseudocycles. Our arguments hold even for theories with gravitational anomalies. We also give a non-perturbative argument that excludes theories with scale but not conformal invariance. This argument holds for theories in which the stress-energy tensor is sufficiently nontrivial in a technical sense that we make precise.Comment: 41 pages, 2 figures. v2: Arguments clarified, some side comments corrected, connection to previous work by Jack and Osborn described, conclusions unaffecte
    corecore